Author:
Fu Y D,Dai X Y,Zhang H D,Shang K G
Abstract
Abstract
In order to study the stability performance of the three-limbed steel tube latticed column, the finite element numerical analysis method based on the structural stability theory is adopted. Firstly, the linear analysis of the three-limbed steel tube latticed column without diagonal lacing bar is carried out, and the calculation method of elastic buckling load considering the influence of shear deformation is obtained. Then, the elastic buckling analysis and elastoplastic buckling analysis three-limbed steel tube latticed column with diagonal lacing bar are carried out. The elastic buckling load and elastoplastic buckling load of three-limbed steel tube latticed column with diagonal lacing bar are studied when only the global initial geometric defects, only the member initial geometric defects, and both kinds of defects are considered at the same time. The results show that the direct finite element analysis method can be used to calculate the elastic buckling load of three-limbed steel tube latticed column with diagonal lacing bar, and the error is 6.67%. In the elastic analysis of three-limbed steel tube latticed column with diagonal lacing bar, the column global stability mainly depends on the global initial geometric defects, and the member initial geometric defect is negligible. And when two kinds of defects are applied at the same time, the structural buckling load is reduced by less than 0.20% compared to the global initial geometric defects. In the elastoplastic analysis, the column global stability is determined by both the global initial geometric defect and the member initial geometric defect. When both defects are applied at the same time, the structural buckling load decreases by less than 0.65% compared to the global initial geometric defect only, and 7.60% compared to the member initial geometric defects only. It can be concluded that there is little difference in the overall stability bearing capacity between the two kinds of defects.
Subject
General Physics and Astronomy
Reference12 articles.
1. Calculation of in-plane stability of lattice compression bending members;Liu;Steel Structure,2004
2. Flexural buckling of laced column with serpentine lattice;RazdoLsky;The IES Journal Part A-Civil &Structural Engineering,2010
3. Exact solution for general variable cross-section members;Eisenberger;Comput. Struct.,1991