Author:
Permata Y E,Cahyani R A,Karamah E F,Bismo S
Abstract
Abstract
In this study the content of phenol and 2,4-DCP (2,4-dichlorophenol) in synthetic wastewater was decomposed using the excitation technique of a mixture of waste liquid and air in a cold plasma Dielectric Barrier Discharge (DBD) reactor. The purpose of this study was to study the degradation process of organic compounds of phenol and 2,4-DCP liquid waste into simpler compounds. Plasma technology applied to the liquid-air mixture in the DBD reactor has the ability to oxidize and degrade organic synthetic wastewater into simpler compounds with relatively faster processing times without forming new waste compounds. Plasma air (excited air) will degrade wastewater by breaking the atomic bonds of synthetic wastewater compounds at high voltages between 220 - 330 V. The performance of the degradation process of synthetic waste can be known through analysis of phenolic compounds, hydroxyl and dissolved ozone, COD, and the final product. The parameters studied in this study are air gas flow rate 2 - 2.5 L/min, waste water flow rate 52 - 100 mL/min, plasma voltage between 220 - 330 V, and volume of waste water. This study also compared the degradation process of phenol and 2,4-DCP in cold plasma DBD reactor with the degradation process in multi-injection bubble column reactor. The removal efficiency of the process achieved 57.5% for phenol and 89.55% for 2,4-DCP.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献