Video Content-Based Advertisement Recommendation System using Classification Technique of Machine Learning

Author:

Konapure R C,Lobo L M R J

Abstract

Abstract Content-based advertising is a method by which we advertise on a video media based on a relevant topic assigned to the video. In digital advertising, the advertisements shown to a user is based on the user’s behaviour on the internet. Streaming platforms are then used to target audience based on parameters like user’s geo-location, interests, watch history, age, etc. In most cases, the advertisements shown are not relevant; an undesired impact is created. Content-based advertising helps to convey the message with increased efficiency and simultaneously optimizes its conversion rate. In this proposed system we take the video metadata as input and apply the NLP techniques for text classification which categories the video and assigns a relevant advertisement to it. The second module takes the video as an input. Thereafter the video is converted into N individual frames to tackle the video classification as an image classification problem. In this proposed system we train a Convolutional Neural Network to identify the topic of the video on an image dataset and compare its performance with a pre-trained model. We create the image dataset by downloading images from the internet. We also create a video advertisement’s dataset by web scrapping. This proposed system makes sure that the user is shown the advertisement in reference to the video. This increases probability of the user visiting the client’s website.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. Exploring the psychological mechanisms from personalized advertisements to urge to buy impulsively on social media;Virda;International Journal of Information Management,2019

2. Advertising recommendation system based on dynamic data analysis on Turkish speaking twitter users;Onur,2015

3. Effectiveness of Social media as a marketing tool: An empirical study;Abu

4. Towards Understanding the Consumption of Video-Ads on YouTube;Mariana;The Journal of Web Science,2018

5. Text Data Analysis for Advertisement Recommendation System Using Multi-label Classification of Machine Learning;Rushikesh;MAT Journals,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3