The analysis of Titan’s physical surface using multifractal geometry methods

Author:

Morena Carlos De La,Nefedyev Y A,Andreev A O,Ahmedshina E N,Arkhipova A A,Kronrod E V,Demina N Y

Abstract

Abstract Titan makes up 95% of the mass of all 82 satellites of Saturn. Titan’s diameter is 5152 km, which means that it is larger than the Moon by 50%, and it is also significantly larger than Mercury. On the satellite, a subsurface ocean is possible, the theory of the presence of which has already been advanced earlier by some scientists. It is located under a layer of ice and consists of 10% ammonia, which is a natural antifreeze for it and does not allow the ocean to freeze. On the one hand, the ocean contains a huge amount of salt, which makes the likelihood of life in it hardly possible. But on the other hand, since chemical processes constantly occur on Titan, forming molecules of complex hydrocarbon substances, this can lead to the emergence of the simplest forms of life. There are limitations on the probabilistic and statistical approaches, since not every process and not every result (form and structure of the system) is probabilistic in nature. In contrast to this, fractal analysis allows one to study the structure of complex objects, taking into account their qualitative specifics, for example, the relationship between the structure and the processes of its formation. When constructing a harmonic model of Titan, the method of decomposition of topographic information into spherical functions was used. As a result, based on the harmonic analysis of the Cassini mission data, a topographic model of Titan was created. In the final form, the model describing Titan’s surface includes the expansion of the height parameter depending on the spherical coordinates into a slowly converging regression series of spherical harmonics. For modeling surface details of the surface on a scale of 1 degree requires analysis of the (180 + 1)2 harmonic expansion coefficients. An over determined topographic information system was solved to meet the regression modelling conditions. In this case, a number of qualitative stochastic data, such as external measures, were used together with the standard postulation of the harmonic system of the Titan model. As a result of a sampling of self-similar regions (with close values of the self-similarity coefficients) on the surface of Titan, coinciding with the SRGB parameter (characterizes the color fractal dimension), the elements of the satellite’s surface were determined, which with a high degree of probability were evolutionarily formed under the action of the same selenochemical processes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3