Abstract
In this work, we report the progress in the design and construction of an RPC detector fully built using additive manufacturing technology, an emerging/interdisciplinary engineering domain only partially utilized in HEP. Our novel design of the 3D detector stack can be automatically and fully constructed in a short time, ensuring repeatability and accuracy, while minimizing construction mistakes. 3D printing, applied to instrumentation for physics enhances detector performance and capabilities, cutting construction costs and improving standardization over large-scale productions. The delivered detector constitutes a new generation of RPC detectors, electrically equivalent to the existing ones but mechanically better and standardized according to the prescribed specifications.
We aim at proving the feasibility studies of a 3D printed detector that features state-of-art performance, at a fraction of the cost and potentially constructed without the need of external industrial partners.
Subject
General Physics and Astronomy