Shell buckling simulations of suction buckets with stochastic and deterministic imperfection forms

Author:

Böhm Manuela,Schaumann Peter

Abstract

Abstract Suction buckets are large shell structures that have become a prominent alternative to pile foundations for bottom-fixed and floating offshore wind turbines. They are embedded by applying negative pressure, which leads to a high risk of structural buckling during the installation. The prediction of the buckling strength of such large shells is subject to uncertainty, since it depends significantly on the initial geometric imperfections resulting from the fabrication process. The aim of this work is to understand and reduce uncertainties in the determination of the buckling pressure. Previous work on suction buckets revealed that the choice of a representative imperfection form and amplitude is very challenging and has not yet been solved in a generalized manner. In this work, a stochastic modeling approach is introduced, which considers more realistic imperfection patterns. This approach is compared to widely established imperfection forms such as buckling mode affine imperfections and analytically described weld depressions. The generated imperfection patterns are applied to geometrically and materially nonlinear finite element models and the buckling pressures are calculated. By quantifying the impact of different imperfection forms and amplitudes, uncertainties can be reduced, and design optimization and cost minimization are enabled.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3