A frequency-time domain method for annual energy production estimation in floating wind turbines

Author:

Amaral R,Laugesen K,Masciola M,von Terzi D,Deglaire P,Viré A

Abstract

Abstract A new method is proposed to estimate a floating wind turbine’s annual energy production (AEP) using frequency and time-domain design techniques. The approach demonstrated herein estimates the AEP by performing a convolution between the floating platform response and the response power operators (RPOs) that map the average power produced by the turbine as a function of the amplitude and frequency of the platform motions. One advantage of this approach is that it can be performed early in the conceptual design phase to help discover design space trade-offs between the platform and rotor design. The methodology is applied to the IEA Wind 15 MW WindCrete spar-buoy model using OpenFAST. The RPOs are obtained by prescribing single-DOF platform motions to the turbine with a given amplitude and frequency. This methodology is then validated by comparing the AEP estimation from the RPOs with the AEP estimation from fully-coupled simulations. The results indicate that the method is able to estimate the value of AEP for a realistic sea-state and regular waves. However, further validation is needed as, in the first case, the turbine is moving too little and, in the second case, the contribution of the controller may be dominant.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference9 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3