Self- concentrated mass-transfer during deformation treatments of organic-inorganic compositions

Author:

Tsebruk I S,Pokidov A P,Kedrov V V,Klassen N V

Abstract

Abstract This paper prolongs the series of our previous papers where we found super-fast and super-deep introduction of foreign substances in crystalline materials by means of the ball rolling. A set of new experimental results was used to justify the new version of the mechanism of this introduction with the record speed and depth. The main process which determines this phenomena is connected with the sequence of openings and closings of nanocracks at the surface subjected to the rolling and the capture of the substance introduced from the surface by these cracks. The process of this introduction with the record parameters is supported by the intense chemical interactions between the matrix and the substance being introduced. This chemical interaction is intensified by several times with the deformation treatments. The analogous super-fast mass transfer is observed in the situation of the pulling out of the polystyrene fibers from the solution of polystyrene in benzene when the interaction of the organic components with cesium iodide nanoparticles was activated by the deformation treatment of the solution during its pulling out resulting in the formation of big amounts of nano-channels promising for effective utilization of hazardous radioactive wastes.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3