Research on prediction model of quantitative relationship of pressure attenuation of hydrogen fuel cell air compressor based on artificial neural network

Author:

Liu Qi,Han Yubo,Liu Zhen,Yuan Shuo,Liu Jianxiong

Abstract

Abstract This thesis considers the field of the pressure attenuation of hydrogen fuel cell air compressors as the main subject of its study. Traditional methods usually model the prediction of pressure attenuation based on a durability test or physical model, which is costly and time-consuming. Based on the method of artificial neural network (ANN), this paper establishes a prediction model of the quantitative relationship of outlet pressure attenuation of hydrogen fuel cell air compressors. A neural network is used to capture the nonlinear relationship of outlet pressure of air compressors, and the prediction results of the model are analyzed and explained to explore the attenuation process of outlet pressure of hydrogen fuel cell air compressors. The comparison between the actual test data and the predicted data through the endurance test of the air compressor shows that the prediction ability of the model is good, and the correlation of the regression analysis results of the prediction model is above 0.99, which can be used to predict the quantitative relationship of outlet pressure attenuation of hydrogen fuel cell air compressor.

Publisher

IOP Publishing

Reference7 articles.

1. Development status and trend of air compressor for fuel cell vehicles [J];Bao;CJPS,2016

2. Experimental study on performance attenuation characteristics of fuel cell centrifugal air compressor [J];Bao;Journal of Hunan University (Natural Science),2023

3. Research on Monitoring of Air Compressor Exhaust Pressure Based on Variant LSTM Research on Monitoring of Air Compressor Exhaust Pressure Based on Variant LSTM [J] (in Chinese);Wang;Journal of the Dalian University of Technology (Natural Science),2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3