MSCNN-BLSTM based Prediction of the Remaining Useful Life of Aeroengine

Author:

Wang Lei,Chang Dongrun,Li Zongshuai

Abstract

Accurate prediction of the aeroengine remaining useful life (RUL) is essential to improve engine availability and reliability. Aiming at the reliable prediction of residual life of aeroengine system, an engine residual life prediction model based on the fusion of multiscale fusion two-dimensional convolutional neural network and bidirectional long and short term memory (MSCNN-BLSTM) is proposed. Based on the fusion of two-dimensional convolutional neural network and bidirectional long and short time memory (BLSTM) network, the engine medium and advanced features extracted by the convolutional neural network are integrated to make residual life prediction. Finally, C-MAPSS dataset provided by NASA was used for validation. It is shown that the proposed multiscale hybrid model, compared with other model predictions, reduces the performance index score and root mean square error by 32.2% and 14.7% respectively. It can be seen that the data-driven model can effectively extract the information from the degradation data, which improves the prediction performance of aeroengine remaining life.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3