Weather-dependent passive thermography and thermal simulation of in-service wind turbine blades

Author:

Chaudhuri Somsubhro,Stamm Michael,Krankenhagen Rainer

Abstract

Abstract To cope with the increase in the manufacturing and operation of wind turbines, wind farm operators need inspection tools that are able to provide reliable information while keeping the downtime low. Current inspection techniques require the wind turbine to be stopped. This work presents the current progress in the project EvalTherm, in which passive thermography is evaluated as a possible non-destructive inspection tool for operational wind turbine blades (WTBs). A methodology to obtain thermal images of rotating WTBs has been established in this project. However, the quality of the results is heavily dependent on various aspects such as weather conditions, information on the inspected WTB, damage history, etc. In this work, a section of a used WTB is simulated using finite-element modelling (FEM) as well as experimentally tested for evaluating the accuracy of the model. Such a model will provide insight into the potential thermal response of a certain structure (with specific material properties) in given weather (boundary) conditions. The model is able to provide satisfactory predictions of the temporal thermal response of the structure, as well as indicate what thermal contrast(s) transients result from artificial defects introduced in the structure.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3