Pattern mining based data fusion for wind turbine condition monitoring
-
Published:2023-05-01
Issue:1
Volume:2507
Page:012001
-
ISSN:1742-6588
-
Container-title:Journal of Physics: Conference Series
-
language:
-
Short-container-title:J. Phys.: Conf. Ser.
Author:
Chesterman Xavier,Verstraeten Timothy,Daems Pieter-Jan,Nowé Ann,Helsen Jan
Abstract
Abstract
The profitability of wind turbine energy production is for an important part determined by the operation and maintenance costs of wind turbines. An important driver of these costs is currently the premature failure of components due to excessive wear. If it would be possible to accurately predict these failures, preventive maintenance can be made more effective, which should result in less downtime and expensive unexpected failures. This in turn should lower the operational and maintenance costs. The research presented here is a contribution to the research on condition monitoring and failure prediction for wind turbines. To this end, a methodology for failure prediction is designed that combines (fuses) multiple information sources (i.e. SCADA and status log data). The novelty of this research lies in the fact that pattern mining techniques are used to identify relevant rules for a rule-based failure classifier. The methodology is validated on generator bearing failure cases from a real operational wind farm. The results show that the methodology is able to predict generator bearing failures accurately well in advance. The rules on which the predictions are based are interpretable and correspond in general to expert knowledge on the matter.
Subject
Computer Science Applications,History,Education
Reference20 articles.
1. Performance and reliability of wind turbines. A review;Pfaffel;Energies,2017
2. Fleetwide data-enabled reliability improvement of wind turbines;Verstraeten;Renew. Sust. Energ.,2019
3. Wear analysis of wind turbine bearings;Tazi;Int. J. Renew. Energy Res.,2017
4. Part 12-1: Power performance measurements of electricity producing wind turbines,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献