Experimental Evaluation of Thermoelectric Generator Performance under Different Heat Conduction Boundary Conditions

Author:

Wang Haitao,Fu Qiang

Abstract

Abstract Heat conduction boundary conditions play a crucial role in the performance of thermoelectric generators (TEG). The TEG output voltage and power were measured under constant temperature boundary and heat flux conditions to evaluate the TEG performance under different heat conduction boundary conditions. External loading pressure and thermal interface material (TIM) were applied to reduce the interfacial thermal contact resistance. In our measurement setup, a fast-response electronic load was used for the rapid current-voltage scan, which can eliminate the thermal drift caused by the Peltier effect. A guard heater arrangement is used to minimize heat loss. In constant temperature boundary conditions, reducing the thermal contact resistance can increase the effective temperature drop across the TEG module and significantly improve the output voltage and power. But in the constant heat flux conditions, since the heat flux flow through the TEG is unchanged, the temperature drop across the TEG was unaffected by the thermal contact resistance. As a result, the TEG performance was lightly influenced by the thermal contact resistance.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3