Experimental study on a loop thermosyphon with microencapsulated phase change material suspension

Author:

Tan Zhenyu,Li Xunfeng,Zhou Jingzhi,Huai Xiulan

Abstract

Abstract Microencapsulated phase change material suspension (MPCMS) represents an innovative category of functional thermal fluids. This novel working fluid not only preserves the substantial energy density and high latent heat of phase change materials (PCM), but also mitigates the issues related to PCM, including susceptibility to aggregation and low thermal conductivity. This article selects phase change microcapsules with a phase change temperature of 70 °C, and uses pure water as the base liquid to prepare MPCMS as the working fluid for the loop thermosyphon. A series of heat transfer experiments are conducted, and the results are compared with those of pure water experiments. A 135mm*650mm copper loop thermosyphon, is designed and constructed to investigate the effect of various input power on the heat transfer performance. The results show that the addition of MPCMS can reduce the wall temperature by up to 2.9°C and the loop thermal resistance by 6.3%. Compared with water, the loop thermosyphon with MPCMS has better start-up characteristics. The performance of the MPCMS is affected by various parameters, which are interconnected. Particles in close proximity to the wall display erratic movement, fluctuating across different temperature zones, thereby undergoing a continuous cycle of melting and solidification. This study establishes a basis for further investigation into the practical implementation of MPCMS in industries.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3