Heavy-duty gas turbine 3D blade modelling and flow field analysis

Author:

He Zongze,Xin Jiali,Guan Jin,Weng Yiwu,Lv Xiaojing

Abstract

Abstract Hydrogen-fuelled heavy-duty gas turbine is an important trend of gas turbine due to its low emission characteristics. Due to the change of components and thermodynamic properties of the fuel, the physical properties of the working fluid of the turbine will change and affect the performance of the gas turbine. In this study, through 3D scanning and inverse modelling, the parametric models of the turbine blades were obtained. CFD analysis was conducted to analyse the change of thermodynamic performance and flow field under different fuel, which is natural gas, 50% natural gas and 50% hydrogen and hydrogen. The result of the CFD indicated that the efficiency of natural gas fuelled working flux is 92.86%, and decreased by 0.19% and 0.83% with hydrogen doped in. It is analysed that though the increased magnitude of relative velocity with hydrogen doped in, the increased flow attack angle of the rotor, from -4.74°, to -3,61°, to -1.88° with hydrogen doped in, caused the split of rotor leading edge cooling air and decreased the efficiency of the turbine stage. Modification of blade metal angle could boost the efficiency of the turbine stage under hydrogen-doped fuel.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3