Structural optimization of S-CO2 Brayton cycle compressor impeller based on evolutionary algorithm

Author:

Xie Liangtao,Yang Jianguo,Hu Nao,Fan Yu,Sun Sicong

Abstract

Abstract As the critical components for marine low-speed diesel engine flue gas waste heat recovery (WHR) supercritical carbon dioxide (S-CO2) Brayton cycle system, the structure of the compressor impeller is optimized by the evolutionary algorithm (EA) based on the co-simulation of the CAESES, ANSYS CFX and Opti Slang. The law of impeller pressure ratio, efficiency and power consumption in S-CO2 Brayton cycle (SCBC) as a function of rotational speed, inlet temperature, pressure and impeller structural parameters are revealed, and the method of improving SCBC efficiency for marine low-speed diesel engine flue gas waste heat recovery is studied. The optimized impeller structure is greatly enhanced in aerodynamic performance and safety, and the isentropic efficiency is increased by 2.54%, the pressure ratio is increased by 35.64%, and the temperature rise is increased by only 4.6%. A 100kW S-CO2 compression cycle test bench was set up to verify the simulation-optimized impeller results. The final results show that the optimized impeller structure, aerodynamic performance and safety are greatly improved. It provides theoretical support for selecting and optimising compressor impellers for marine low-speed diesel engine flue gas waste heat recovery S-CO2 Brayton cycle.

Publisher

IOP Publishing

Reference20 articles.

1. Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines;Zhang;Energy,2020

2. New technologies for CHP: Supercritical and Beyond;Reitenbach;Power,2015

3. A Review on Supercritical Carbon Dioxide Brayton Cycle;Ji;Journal of Chinese Society of Power Engineering,2022

4. Design and Aerodynamic Performance Investigation of Supercritical Carbon Dioxide Centrifugal Compressor;Cao;Journal of Xi’an Jiaotong University,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3