Vibration isolation characteristics of a rubber isolator in the deep water condition

Author:

Yang Danyi,Xue Lei,An Yvchen,Liu Jing

Abstract

Abstract In order to explore the effect of the deep water condition on the vibration isolation performance of rubber isolators, a finite element model of shipboard rubber vibration isolator with different depths which considers the nonlinear material properties of rubber is established. The nonlinear properties of rubber materials are characterized by the Mooney-Rivlin hyper-elasticity model. Hydrostatic pressure is applied on the surface of the isolator in the form of pre-stress to simulate deep water conditions. The static and dynamic mechanical characteristics of the rubber isolator under deep water environment are obtained. The results show that the static stiffness of vibration isolator increases with the water depth, especially when the rubber hardness is high. The natural frequency of the isolator under deep water environment increases with the water depth. The transmission loss of rubber isolators under deep water environment significantly reduces due to the change of static stiffness. The results can provide technical support for the design and optimization of underwater vibration isolators.

Publisher

IOP Publishing

Reference9 articles.

1. Research on Static Stiffness of Marine Rubber Isolator Under Different Hydrostatic Pressure;Zheng;Ship Electronic Engineering,2022

2. A review of partial solutions of finite elasticity and their applications.;Hill;Internal Journal of Nonlinear Mechanics,2001

3. Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods;Sasso;Polymer Testing,2008

4. Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis;Miller,2000

5. Useful life prediction of lifetime structural morphology deformable rubber isolator;Jin;Journal of Vibration, Measurement & Diagnosis,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3