Performance prediction and loss evaluation of the carbon dioxide supersonic nozzle considering the non-equilibrium condensation

Author:

Guojie Zhang,Yunpeng Li,Jianming Ye,Zunlong Jin,Dykas Sławomir

Abstract

Abstract Carbon dioxide (CO2) is being considered as a promising working medium in energy conversion and refrigeration cycles due to its unique properties. When carbon dioxide flows with supersonic in turbo machinery (compressor), the non-equilibrium effect is enhanced due to the large change of fluid velocity, resulting in non-equilibrium condensation of the blade, which will seriously affect the performance of the compressor. Considering the similarities in flow characteristics between the nozzle and the compressor blade, the condensing flow of the blade can be predicted by simulating in a nozzle. The real gas model is used. The pressure and the nucleation rate are predicted based on the modified model, and the flow losses and thermal efficiency are analyzed in different states. The results show that the pressure variation in the nozzle aligns well with the experimental data. When the fluid transitions from subcritical to supercritical, the condensation interval decreases and the peak of the nucleation rate increases. The maximum supercooling decreases gradually. The flow losses are relatively large, and the thermal efficiency is low.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3