Optimization of crankshaft main bearing lubrication performance considering bearing profiles

Author:

Du Qingchuan,Cheng Ying,Ren Peirong,Zhang Zhongwei

Abstract

Abstract It is the aim of this work to reduce friction power loss of main bearings by optimization. To this purpose, elastohydrodynamic (EHD) model is used for EHD calculations for different main bearings. BP neural network is implemented to establish the approximation model for bearings. Then, multi-objective optimization of bearings using genetic algorithm is formulated and conducted. It is found that a more compliant bearing profile can provide hydrodynamic lift during film lubrication while bearing profiles have more significant impact on lubrication performance in comparison to other key parameters. The results of the BP network model using the genetic algorithm agree closely with the calculated value based on EHD-MBD model. The presented approach allows reliably to conduct the optimization of bearings. After optimization, the friction power loss is significantly reduced while the minimum oil film thickness increases and the total pressure drops.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3