Behavior and mechanisms of Doppler wind lidar error in complex terrain: stable flow case study at Perdigão

Author:

Black A,Lundquist J K,Montavon C,Robey R

Abstract

Abstract A numerical experiment is carried out investigating the magnitude of biases in ground-based lidar measurements in complex flow conditions. Biases assessed include those arising from flow curvature and from the interaction of turbulence with the wind field reconstruction (WFR) algorithms used by a WindCube lidars and anemometers. RANS-CFD and WRF-LES simulations were performed for the Perdig˜ao Field Experiment site for a range of atmospheric conditions. Virtual anemometer and lidar data were generated for four locations: two near exposed ridge tops and two in low-speed regions in the valley. The LES data at these four locations show that the scalar inflation terms (the relation between scalar and vector averaged wind speed) for virtual lidar and virtual cups agree very well with predictions using perturbation theory. While the lidar errors vary greatly with location and height, the contribution from the flow curvature tends to be larger than the differences arising from scalar inflation. For one lidar/mast pair near the ridge top, comparisons between simulations and measurements are carried out for a resonant mountain wave event on June 14th, 2017, and for the whole duration of the Perdig˜ao campaign for winds perpendicular to the ridges. The lidar error during the mountain wave, a period of strong stability and low inversion height, is significantly larger than the campaign average. The sensitivity of the lidar error to atmospheric stability is confirmed by the RANS simulations, which suggests strong sensitivity of flow curvature error to stability conditions and to the shape of the wind speed profile near the top of the boundary layer.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3