Development of R-Shiny interface for implementation of backpropagation neural network model in breast cancer classification

Author:

Islahuzaman G,Santoso R,Warsito B,Ispriyanti D,Yasin H

Abstract

Abstract Artificial Neural Network or Neural Network (NN) is an information processing system that has similar characteristics to the neural network in living things. One type of NN that is often used in classification is Backpropagation Neural Network (BPNN). BPNN is an NN model that is often used for classification because it does not need to use assumptions and has high accuracy. One of the classification problems that can be solved with BPNN is the classification of breast cancer. The breast cancer data used in this study came from the UCI Machine Learning website. The problem with BPNN is that programming is difficult for users who do not understand the program, especially the R program. Therefore, to make it easier for users to analyze BPNN, an R-Shiny application or interface is created using the RStudio program. The application or R-Shiny interface that has been created has several advantages, namely the application process that is fast in displaying classification results, the use of user-friendly applications and the use of applications that are more comfortable when compared to having to write syntax such as in the R program. BPNN classification results use The R-Shiny interface has a different level of accuracy for each experiment due to the random distribution of training & testing data. The experiments conducted in this study resulted in a range of accuracy values ranging from 58.33% to 91.67% with an average accuracy of 74.17%.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3