Simulation Analysis and Lightweight Design of Automotive Transmission Shafts Based on Optistruct

Author:

Zeng Wenhao,Mao Luyao,Huang Dong,Wang Can,Chen Qiyu

Abstract

Abstract The transmission shaft is an important power transmission assembly in the automotive transmission system. Its structural mechanical performance is crucial for the comfort and safety of the vehicle. For this purpose, the transmission shaft of commercial vehicles is taken as the research object. Mechanical simulation analysis is conducted based on the finite element analysis software of Optistruct to investigate the stress and displacement distribution of various components on the transmission shaft under maximum torque and to verify its strength and stiffness. In addition, based on the stress distribution and manufacturing process requirements of the transmission shaft, a lightweight design is carried out for the transmission shaft components. The research results indicate that using simulation analysis methods can quickly obtain the force transmission path of the transmission shaft assembly and introducing manufacturing process requirements for lightweight design not only meets the manufacturing requirements but also has a more uniform stress distribution. The overall structure of the transmission shaft has been reduced from 23.8 kg to 16.8 kg with a weight reduction of 30%. The lightweight design method described in this article can quickly achieve weight reduction goals while meeting the structural strength of the transmission shaft.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference14 articles.

1. The Application of Finite Element Analysis in the Design of Engineering Machinery Components;Xu;Chinese Internal Combustion Engine Engineering,2023

2. Improvement of Material and Structure of Passenger Car Transmission Shaft Based on Finite Element Analysis;Wen;Journal of Xihua University (Natural Science Edition),2022

3. Finite Element Analysis and Optimization of Transmission Shafts Based on CATIA and HYPERWORKS;Liu;Journal of Anqing Normal University (Natural Science Edition),2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3