Noise-residue learning convolutional network model for magnetic resonance image enhancement

Author:

Singh Ram,Kaur Lakhwinder

Abstract

Abstract Magnetic Resonance Image (MRI) is an important medical image acquisition technique used to acquire high contrast images of human body anatomical structures and soft tissue organs. MRI system does not use any harmful radioactive ionized material like x-rays and computerized tomography (CT) imaging techniques. High-resolution MRI is desirable in many clinical applications such as tumor segmentation, image registration, edges & boundary detection, and image classification. During MRI acquisition, many practical constraints limit the MRI quality by introducing random Gaussian noise and some other artifacts by the thermal energy of the patient body, random scanner voltage fluctuations, body motion artifacts, electronics circuits impulse noise, etc. High-resolution MRI can be acquired by increasing scan time, but considering patient comfort, it is not preferred in practice. Hence, postacquisition image processing techniques are used to filter noise contents and enhance the MRI quality to make it fit for further image analysis tasks. The main motive of MRI enhancement is to reconstruct a high-quality MRI while improving and retaining its important features. The new deep learning image denoising and artifacts removal methods have shown tremendous potential for high-quality image reconstruction from noise degraded MRI while preserving useful image information. This paper presents a noise-residue learning convolution neural network (CNN) model to denoise and enhance the quality of noise-corrupted low-resolution MR images. The proposed technique shows better performance in comparison with other conventional MRI enhancement methods. The reconstructed image quality is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity index (SSIM) metrics by optimizing information loss in reconstructed MRI measured in mean squared error (MSE) metric.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved attentive residue multi-dilated network for thermal noise removal in magnetic resonance images;Image and Vision Computing;2024-10

2. Advancements in Breast Imaging: CNN-based Thermogram Quality Enhancement;2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT);2024-01-04

3. Thermal Noise Removal of Magnetic Resonance Images: A Deep Learning Approach Based on an Attentive Residue Multi-Dilated Network with Adaptive Filtering and Discrete Cosine Transform;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3