Design and Implementation of AGU based FFT Pipeline Architecture

Author:

Prasanna Kumar G.,Chandra Maturi Sarath,Shiva Prasanna K,Mahesh M

Abstract

Abstract Present it is most needful task to get various applications with parallel computations by using a Fast Fourier Transform (FFT) and the derived outputs should be in regular format. This can be achieved by using an advanced technique called Multipath delay commutator (MDC) Pipelining FFT processor and this processor will be capable to perform the computation of a different data streams at a time. In this paper the design and implementation of AGU based Pipelined FFT architecture is done Caluclation of a butterfly is done within 2 cycles by the instructions proposed. A Data Processing Unit (DPU) is employed in this pipeline architecture and supports the instructions & an FFT Adress Generation Unit (FAGU) caluclates butterfly input & output data adresses automatically. The DPU proposed sysyem requires less area compared to commericial DSP chips. Futhermore, the proposed FAGU reduces the number of FFT computation cycles. The FFT design architecture will have real data paths. With various FFT sizes, different radix & various parallesim levels, the FFT can be mapped to the pipeline architecture. The most attractive feature of the pipelined FFT architecture is it consists of bit reversal operation so it requires little number of registers and better throughput.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference16 articles.

1. A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT;Wang;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2015

2. A reconfigurable FFT architecture for variable-length and multistreaming OFDM standards;Boopal;Proc. IEEE ISCAS,2013

3. MDC FFT/IFFT processor with variable length for MIMO-OFDM systems;Yang;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2013

4. Pipelined parallel FFT architectures via folding transformation;Ayinala;IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3