Click Fraud Detection Approaches to analyze the Ad Clicks Performed by Malicious Code

Author:

Bathula Mahesh,Tanguturi Rama Chaithanya,Madala Srinivasa Rao

Abstract

Abstract Mobile PR is an important component of the mobile app ecosystem. A major threat to this ecosystem’s long-term health is click fraud, which involves clicking on ads while infected with malware or using an automated bot to do it for you. The methods used to identify click fraud now focus on looking at server requests. Although these methods have the potential to produce huge numbers of false negatives, they may easily be avoided if clicks are hidden behind proxies or distributed globally. AdSherlock is a customer-side (inside the app) efficient and deployable click fraud detection system for mobile applications that we provide in this work. AdSherlock separates the computationally expensive click request identification procedures into an offline and online approach. AdSherlock uses URL (Uniform Resource Locator) tokenization in the Offline phase to create accurate and probabilistic patterns. These models are used to identify click requests online, and an ad request tree model is used to detect click fraud after that. In order to develop and evaluate the AdSherlock prototype, we utilise actual applications. It injects the online detector directly into an executable software package using binary instrumentation technology (BIT). The findings show that AdSherlock outperforms current state-of-the-art methods for detecting click fraud with little false positives. Advertisement requests identification, mobile advertising fraud detection are some of the keywords used in this article.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3