Influence on energy demand of thickness, thermal conductivity, and volumetric heat capacity of ladle working lining in secondary steel-making process

Author:

Neri M,Pilotelli M,Lezzi A M

Abstract

Abstract The secondary steel-making process involves several steps during which steel is kept in a ladle, that is, a vessel made of an outer steel layer (carpentry), an intermediate refractory layer, and an internal refractory layer. Unlike the intermediate layer, the internal layer undergoes a progressive reduction in thickness and a periodic restoration. Traditionally, it is made of alumina or magnesite. During the process, the ladle undergoes unsteady heating and cooling; therefore, heat transfer depends on thermal conductivity and heat capacity. This study aims to identify the ladle internal layer characteristics that affect the energy demand. This analysis investigates the effect of the internal layer thickness S, volumetric heat capacity C, and thermal conductivity λ. Through the Design Of the Experiments (DOE), different scenarios have been selected and analyzed by means of numerical simulations performed on a numerical model defined in COMSOL Multiphysics. The energy demand as a function of the internal layer properties has been estimated, and it has emerged that low thermal conductivity and heat capacity values require a lower amount of energy.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Enhanced numerical tool to evaluate steel ladle thermal losses;Santos;Ceramics International,2018

2. Heat Transfer in Steelmaking Ladle;Zimmer;Journal of iron and steel research international,2008

3. Thermal Modelling of the Ladle Preheating Process;Glaser;Steel research int,2011

4. Fluid Flow and Heat Transfer in the Ladle during Teeming;Glaser;Steel research international,2011

5. Effect of slag cover on heat loss and liquid steel flow in ladles before and during teeming to a continuous casting tundish;Sanjib;Metallurgical Transactions B,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3