Experimental analysis of flow boiling heat transfer in multi-microchannel evaporators

Author:

Riccardi F,Zummo G,Saraceno L,Gugliermetti L,Caruso G

Abstract

Abstract This paper provides an experimental analysis of flow boiling heat transfer in four finned evaporators with different aspect ratio and heated length have been tested. R245fa was the refrigerant chosen as working fluid for its good thermal characteristics. The imposed heat flux at the footprint covered a range from 30 to 330 kW/m2, while the fluid mass fluxes within the channel varied in a range between 17 and 225 kg/m2 s. The hydraulic diameters of the investigated evaporators were 1.15 mm and 2.09 mm, with aspect ratio (channel width/channel height) respectively of 0.3 and 0.72. Thanks to the measuring apparatus, heat transfer data were collected and then processed to calculate the local heat transfer coefficients, using the fin array heat transfer model. These local values of the heat transfer coefficient were then compared with those calculated from existing correlations for mini-micro channels flow boiling and the Mean Absolute Percent Error was finally assessed.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3