Two Phase Bubble Columns: the Determinants of the Flow Regime Transitions

Author:

Varallo N,Besagni G,Mereu R,Inzoli F

Abstract

Abstract The fluid dynamics in large-diameter bubble columns can be described by an analytical relation between two global flow parameters, the drift flux and the gas holdup. This relation, named bubble column operating curve, builds on five flow regime transitions. In order to determine the variables influencing the flow regime transitions, a statistical approach was derived by coupling: (1) the ordinary least squares method (OLS) to determine the relationship between the variables, (2) the variance inflation factor (VIF) to check for multicollinearity issues, and (3) the least absolute shrinkage and selection operator (LASSO), to select suitable variables. It was found that the geometrical characteristics of the sparger strongly influence the flow regime transitions, and uniform aeration is essential for all the regimes to exist. Increasing the superficial liquid velocity in the counter-current mode destabilises the mono-dispersed and poly-dispersed homogeneous flow regimes. As for the aspect ratio, an increase in the column aspect ratio slightly destabilises the existing flow regimes. The statistical method identifies viscosity as the only significative variable concerning the liquid phase properties.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3