Preliminary thermal-hydraulic deterministic safety analysis of an in-vessel LOCA for the DTT facility

Author:

Grippo G.,Bersano A.,Mascari F.

Abstract

Abstract The DTT (Divertor Tokamak Test) facility is a new experimental tokamak under development by an Italian consortium in cooperation with several high-standard European laboratories. The ENEA division FSN-SICNUC is involved in the project for carrying out deterministic safety analysis of postulated accidents. In the first year of activity, it has been analyzed an In-Vessel LOCA (IVLOCA) scenario. The IVLOCA scenario selected is caused by a break in the divertor’s cassette cooling tubes with the consequent release of coolant inside the Vacuum Vessel (VV). The best estimate thermal-hydraulic system code TRACE, developed by USNRC, was selected to conduct the preliminary thermal-hydraulic analysis of this accident. DTT is currently under design, so not all the data are frozen. Therefore, based on some engineering assumptions and scaling considerations from similar facilities, the nodalization of DTT VV was developed using the three-dimensional TRACE component “VESSEL”. Then, a sensitivity analysis was carried out to simulate the break and the consequent water injection in the VV. This was done to compare the system behavior and test different nodalization approaches. Subsequently, the data of the DTT divertor cooling system were used to run additional simulations. The results allow to compare different nodalization approaches and to have a preliminary estimate of the pressure peak and temperature behavior in the VV for an IVLOCA. Finally, a first uncertainty analysis was carried out using the DAKOTA toolkit, coupled with TRACE code in SNAP. Two uncertain input parameters were selected: the rupture area of a cooling divertor tube and the temperature of the divertor coolant. The uncertainty analysis allows having a wider spectrum of system behavior and a preliminary insight on the dispersion of the VV pressure, selected as figure of merit. This paper aims to show the results of this preliminary analysis, characterizing the phenomena that occurred during the selected transient.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3