Assessment of a Flow-dependent Subgrid Characteristic Length for Large-Eddy Simulation on Anisotropic Grids

Author:

D’Alessandro V,Delorme Y,Falone M,Wasserman M,Ricci R

Abstract

Abstract This paper presents the latest results of a long track development activity in the context of low-dissipative finite volume method for compressible flows. Specifically, here we focus our attention on the Large-Eddy Simulation (LES) approach which can be considered a good candidate for turbulent flow simulations over the next decades. One of the key ingredients of LES models is the subgrid length scale which is typically evaluated based on the local mesh size. This standard approach suffers from loss of accuracy on anisotropic grids that are commonly employed to obtain sufficient wall-normal resolution, whilst keeping the total cell count to a minimum. In order to avoid this issue, we assess the effectiveness of a velocity-gradient-based length scale, referred to as least square length (LSQ) [1]. In this paper, we present for the first time results obtained with the LSQ length scale in the context of compressible LES. The superiority of the LSQ approach over the standard cubic-root length scale is demonstrated in terms of accuracy and overall time to solution.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3