Transmission Line Audible Noise Prediction Based on CNN-BiLSTM-Attention Method

Author:

Huang Yuehua,Zhang Zihao,Chen Qing,Zhang Lei,Zhang Jiangong,Lan Xinsheng

Abstract

Abstract High-voltage transmission lines’ audible noise parameters are impacted by a variety of multidimensional elements. in order to better the accuracy of audible noise prediction and effectively utilize the time-series properties in the observed audible noise data. In this paper, we propose a combined model of a convolutional neural network (CNN) and a bidirectional long and short-term memory network (BiLSTM)-based attention mechanism based on feature filtering for transmission line audible noise prediction. Firstly, using the transmission line real-world audible noise data as the dataset, the multidimensional factor time series parameters are optimally filtered, and high correlation feature vectors are extracted by using CNN. Secondly, the extracted feature vectors are fed into the BiLSTM for training and prediction, and the prediction performance is further improved by introducing an attention mechanism at the BiLSTM end so that the model focuses on learning more important data features. Finally, the prediction analysis using actual recorded audible noise data from a 500 kV AC transmission line in Sichuan Province demonstrates that the combined CNN-BiLSTM-Attention model suggested in this paper has a higher prediction accuracy than the BiLSTM, CNN-BiLSTM, and BiLSTM-Attention models.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference7 articles.

1. Audible noise performance of conductor bundles based on cage test results and comparison with long-term data;Wan;Energies,2017

2. Applied research of PCA method to transmission line audible noise prediction;Jingya;Computer Engineering and Applications,2011

3. Prediction of Audible Noise for EHV Transmission Line Based on Grey Theory;Yongming;High Voltage Apparatus,2015

4. Study of prediction method for audible noise of EHV transmission line;Yongming;Advanced Technology of Electrical Engineering and Energy,2014

5. Prediction of audible noise of AC UHV transmission lines based on relevance vector machine;Lin;Electric Power Automation Equipment,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3