Abstract
Abstract
The results of experimental studies of the shock-wave region of the supersonic plasma jet flow formed by a pulsed capillary discharge with a polymeric wall are presented. Using optical emission spectroscopy of high spatial resolution, a detailed picture of the evolution of the radial profiles of the electron number density and temperature along the initial section of an underexpanded plasma jet, starting from the capillary outlet and ending with the flow stagnation zone, has been obtained. It was found that the profiles of the electron number density and temperature reflect all the features of the shock-wave flow region, tracing the influence of intercepting, central and reflected shock waves.
Subject
General Physics and Astronomy