Non-Integer Dimensional Analysis of Ultrasonic Wave Propagation in Fractal Porous Media

Author:

Bouchendouka A,Fellah Z.E.A,Ogam E,Fellah M,Depollier C

Abstract

Abstract This paper explores the acoustics of porous media characterized by fractal, or self-similar, structures. Employing a fractal approach, we use differential operators in non-integer dimensional spaces to address the fundamental equations of acoustics in such media. The primary aim is to examine the transmission of ultrasonic waves within a fractal porous medium. Our findings reveal that the fractal dimension significantly influences wave transmission. In fractal porous materials, waves travel along more complex and intricate paths, resulting in increased tortuosity and attenuation. We introduce the concept of an effective path length leff , which is dependent on the fractal dimension Dx , to describe the actual trajectory of wave propagation. Additionally, we define an effective tortuosity αDx , directly proportional to l e f f 2 , to quantify the additional tortuosity brought about by the fractal structure. The insights gained from this study are crucial, as they enhance our understanding of wave behavior in self-similar porous media, which are prevalent in various natural settings and have multiple practical applications, including sound insulation and the design of acoustic materials. Furthermore, understanding the impact of fractal dimensions on wave behavior is vital for developing more efficient acoustic solutions. This research also sets the stage for further theoretical and experimental work on applying fractal geometry to analyze wave propagation in porous structures.

Publisher

IOP Publishing

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3