Discrete cosine transform and multi class support vector machines for classification cardiac atrial arrhythmia and cardiac normal

Author:

Ratnadewi ,Hangkawidjaja Aan Darmawan,Prijono Agus,Suherman Jo

Abstract

Abstract The electrocardiogram signal is the most important analysis to detect cardiac arrhythmia. Machine learning classification is used as a first step to detect someone’s arrhythmia or normal heart. This paper discusses one method for detecting arrhythmia by using digital images of cardiac signals and R-R intervals. The process electrocardiogram digital image is divided into two, first the process of calculating the R-R intervals and second the process of extraction feature using Discrete Cosine Transform, followed by calculating the Euclidean Distance or Cityblock Distance with normal electrocardiogram signal reference. Euclidean Distance results or Cityblock Distance and R-R distance of electrocardiogram signals are then classified using Multiclass Support Vector Machine. The results of accuracy the classification four classes that are cardiac normal, atrial premature beat arrhythmia, atrial flutter arrhythmia, and atrial fibrillation arrhythmia, are 81.9%. The originality is used image to detect cardiac normal or cardiac arrhythmia by combined Discrete Cosine Transform, Euclidean distance or City block distance and Multiclass Support Vector Machine.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference23 articles.

1. Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system

2. Digital Signal Processing in Ecg Recorder With Python-Based Software;Kosinski;J. Med. informatics Technol.,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3