On numerical bifurcation analysis of periodic motions of autonomous Hamiltonian systems with two degrees of freedom

Author:

Sukhov Egor

Abstract

Abstract In this work we consider bifurcation problem for natural families of periodic motions of autonomous Hamiltonian systems with two degrees of freedom. While there exists a well-developed analytical approach to this problem, it is limited to small neighborhoods of known equilibria and stationary solutions. To explore the bifurcations of periodic motions for all admissible values of the problem’s parameters it is necessary to employ numerical methods. We propose an approach combining analytical and numerical computation of the natural families with numerical bifurcation analysis. We obtain the so-called base solutions either analytically or numerically for particular values of the problem’s parameters and then employ a numerical method to continue the base solutions to the borders of their existence domains and to identify bifurcation points. Linear orbital stability domains are also obtained in course of the continuation. To illustrate the proposed approach we analyze bifurcation of periodic motions emanating from Cylindrical precession of a dynamically-symmetric satellite on a circular orbit.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3