Fast Harmonic compensation in hybrid HVDC offshore system

Author:

Tian Shangen,Campos-Gaona David,Peña-Alzola Rafael,Anaya-Lara Olimpo

Abstract

Hybrid HVDC systems have been proposed as an alternative for nominal VSC-Based HVDC for offshore applications. Hybrid HVDC systems consist of an offshore power station composed of the connection of high-power diode rectifiers in series with a fractional power VSC-HVDC. This hybrid configuration allows large power transfer from offshore sites, with the added robustness, simplicity and efficiency of uncontrolled rectifiers. In this research, a robust and fast-acting controller, the Two Degrees of Freedom Internal Model controller (2DF-IMC), is used to control the active power filter features of the fractional-power VSC-HVDC system, resulting in a much faster overall THD reduction in the offshore AC currents in dynamic conditions (i.e. time-varying wind power) when compared with standard active power filter controllers. This improvement is the direct consequence of the fast closed-loop dynamics of the 2DF-IMC controller that do not require filtering stages. Additionally, the increased closed-loop response time did not affect the overall robustness of the control system, thanks to the enhanced disturbance rejection capabilities of the 2DF-IMC configuration.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference13 articles.

1. UK becomes first major economy to pass net zero emissions law,2019

2. A European Green Deal | European Commission,2019

3. Grid frequency control for LCC HVDC link connected wind farms;Li,2007

4. Review of VSC HVDC connection for offshore wind power integration;Korompili;Renew. Sustain. Energy Rev,2016

5. Distributed voltage and frequency control of offshore wind farms connected with a diodebased HVdc link;Blasco-Gimenez;IEEE Trans. Power Electron,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3