Streak detection in astronomical images based on convolutional neural network

Author:

Elhakiem A A,Ghoniemy T S,Salama G I

Abstract

Abstract Streak detection is important in space situational awareness and space asset protection. It is desirable to detect moving targets (e.g., satellites, space debris, or meteorites) in images of the sky. This paper presents a comparison between two astronomical frameworks for streak detection based on deep CNNs. The first framework uses the extended feature pyramid network (EFPN) with faster region-based CNNs (Faster R-CNN) and compares it with the second framework that uses the feature pyramid network (FPN) with Faster R-CNN. Because there aren’t enough publicly available astronomical data sets, we use the simulated data set to train the neural network. The metrics of mean average precision (mAP), recall, precision, and F1 score were used to measure the performance of the two frameworks. The experimental results confirmed that the EFPN-based framework achieves a significant improvement in streak detection than the Faster R-CNN framework based on the FPN model.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference15 articles.

1. Streak detection in wide field of view images using Convolutional Neural Networks (CNNs);Varela,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3