Optimizing SIFT algorithm parameters for better matching UAV and satellite images

Author:

Elorabi K A,Zekry A,Mohamed WA

Abstract

Abstract Image registration has been increasingly employed in various applications such as target identification, 3D mapping, and motion tracking. The main idea of Image registration is aligning two or more images of the same scene captured from different viewpoints, at different times. Scale-invariant feature transform, SIFT, is considered one of the most robust algorithms used in image registration for extracting and matching features under different conditions. Using SIFT algorithm default parameters in Matching UAV and satellite Images provides unreliable results due to the nature of aerial images because the dynamic range is quite low. The number of extracted features depends on the image content and the selected parameters. In this paper we tuned SIFT parameters to get the best performance with aerial images, to increase the number of features (SM) and the correct match rate (CMR) which increases the efficiency of the process of registration. The algorithm is validated by matching a large number of aerial images taken by mini-UAV with satellite images for the same region.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference22 articles.

1. Detectors and descriptors for photogrammetric applications;Remondino;International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2006

2. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application;James,2012

3. Performance analysis of the SIFT operator for automatic feature extraction and matching in photogrammetric applications;Lingua;Sensors,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Parallel PCA-SIFT Algorithm Based on Raspberry Pi 4B;Proceedings of the 2023 7th International Conference on Electronic Information Technology and Computer Engineering;2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3