Influence of emissivity on infrared radiation characteristics of the two-dimensional nozzle

Author:

Deng H W,Yang Q Z,Yang B X,Xiao C X

Abstract

Abstract In the case of the same outlet area, the two-dimensional (2-D) nozzle has a large aspect ratio compared to the axisymmetric circline nozzle, which enables it to reduce the visible area of high-temperature components such as the center cone and the flame stabilizer inside the nozzle. It can also strengthen the mixing effect of wake flow and outflow to achieve the effect of cooling. In this work, based on the calculation of the flow field of the 2-D convergent-divergent nozzle, the infrared radiation characteristics of its with different emissivity coatings and the coating under high-temperature coming off are calculated in the 3∼5um waveband. The results show that with the increase of emissivity, the mean value of infrared radiation intensity of the nozzle in the range of detection angle 0°-70° decreases to 68.80%, while the mean value of infrared radiation intensity in the range of detection angle 80°-90° rises to 136.55%. The nozzle coating coming off is caused by excessive temperature and its infrared radiation intensity even exceeds the infrared radiation intensity of the uncoated state when the coating comes off.

Publisher

IOP Publishing

Reference11 articles.

1. Aircraft Powerplant and Plume Infrared Signature Modelling and Analysis;Rao;AIAA,2005

2. Infrared Signature Studies of Aerospace Vehicles;Mahulikar;Progress in Aerospace Sciences,2007

3. Integrated review of stealth technology and its role in airpower;Rao;Aeronautical Journal,2002

4. Effect of Atmospheric Transmission and Radiance on Aircraft Infrared Signatures;Rao;Journal of Aircraft,2005

5. USAF’s New Bomber: To Carry Nukes and Feature Stealth;Dekang;International Aviation,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3