Study on laser ignition and combustion characteristics of micron-sized aluminum and Al-Mg alloys particles

Author:

Hou Fengting,Zhang Beichen,Feng Muyang,Liu Shuwei,Li Shipeng

Abstract

Abstract In response to the problems of easy sintering and long ignition delay time of micron aluminum in the combustion of aluminum-containing propellants, choose the way to add magnesium to metal aluminum to construct an alloy system, through boiling, micro-explosions are generated during the ignition and combustion process to weaken the sintering behavior and shorten the ignition delay time of aluminum. Selecting aluminum and Al-Mg alloy powder fuel with a particle diameter of about 10 μm as the research object, a set of individual-particle fuel laser ignition and microscopic high-speed imaging experimental devices was built that can observe the whole process of ignition and combustion of micron-sized fuel. Thermal analysis was used to detect and characterize the thermal decomposition process of micron-sized aluminum and Al-Mg alloy powders; combined with the results of scanning electron microscopy, the difference in ignition performance of micron-sized individual particle aluminum and Al-Mg alloys was studied. Experiments have found that, compared with aluminum, the initial oxidation temperature of Al-Mg alloys is lower and the combustion is more complete. However, the effect of adding magnesium to aluminum is only reflected before 900 °C. The ignition and combustion images and flame propagation laws of micron-sized single-particle aluminum and Al-Mg alloys were obtained. It was found that adding magnesium shortened the ignition delay time, and the combustion produced less residual.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3