Transient numerical investigation on thermochemical erosion of C/C nozzles in hybrid rocket motors

Author:

Jiang Xianzhu,Tian Hui,Ge Xuanhong

Abstract

Abstract Nozzle erosion is a vital important issue that impacts the performance of hybrid rocket motors. Serious nozzle erosion may significantly decrease the combustion chamber pressure and thrust, which increases the difficulty in designing flight control systems. This paper aims to reveal erosion mechanism systematically. In this paper, transient numerical simulations of thermochemical erosion in hybrid rocket motors are conducted, and combustion flow and thermochemical erosion are coupled calculated. The numerical computation of combustion flow is based on the chemical reactions of propellants and regression rate model, and that of thermochemical erosion is based on the surface reactions between oxidizing species and carbon. The movement of burning surface and nozzle inner surface is simulated through dynamic mesh method. The hybrid rocket motor adopts 90% hydrogen peroxide and hydroxyl-terminated polybutadiene. Distributions of flow field parameters and fuel regression rate are given. The spatial developing process of nozzle surface is presented, and it is found that the roughness of nozzle profile increases with time. The nozzle wall temperature and wall pressure decline with time. Erosion by different species is calculated. OH and H2O make a major contribution to the nozzle thermochemical erosion, while nozzle erosion contributed by CO2 and O2 are quite low. Time-varying characteristics of the erosion rate are unveiled. At the first 1.5 s, the total erosion rate remains almost constant, and then it reduces over time.

Publisher

IOP Publishing

Reference21 articles.

1. Combustion performance comparison of propellant grain for HRM manufactured by casting and fused deposition modeling;Urrego;Int. J. Mech. Eng. Robot. Res.,2019

2. Effects of multi- section swirl injection method on fuel regression rate of high density polyethylene fueled hybrid rocket engine;Ohyama;49th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf.,2013

3. Numerical simulation of low-melting temperature solid fuel regression in hybrid rocket engines;Rashkovskiy;Acta Astronaut.,2020

4. Protrusion effect on the performance of hybrid rocket with liquefying and non-liquefying fuels;Dinesh;Acta Astronaut.,2021

5. Utilization of additive manufacturing in hybrid rocket technology: A review;Oztan;Acta Astronaut.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3