Abstract
Abstract
Photovoltaics (PV) have become increasingly popular and reached as the third-largest renewable energy source. Thin-film solar cells made from earth-abundant, inexpensive and environmentally friendly materials are needed to replace the current PV technologies whose large-scale applications are limited by material and/or resource constraints. Near optimum direct optical bandgap of 1.3 eV, high absorption coefficient (>104 cm−1), less toxic, and abundant raw resources along with considerable scalability have made tin sulfide (SnS) as a strategic choice for next-generation PVs. In this review, limitations of leading commercial PV technologies and the status of a few alternate low-cost PV materials are outlined. Recent literature on crucial physical properties of SnS thin-films and the present status of SnS thin-film-based solar cells are discussed. Deficiency and adequacy of some of the key properties of SnS including carrier mobility (μ), minority carrier lifetime (τ), and absorption coefficient (α) are discussed in comparison of existing commercial solar cell materials. Future research trends on SnS based solar cells to enhance their conversion efficiencies towards the theoretical maximum of 24% from present ~5% and its prospectus as next-generation solar cell is also discussed.
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献