A Comparative Study between Ridge MM and Ridge Least Trimmed Squares Estimators in Handling Multicollinearity and Outliers

Author:

Affindi A N,Ahmad S,Mohamad M

Abstract

Abstract Common problems found in multiple linear regression models are the existence of multicollinearity and outliers. These obstacles usually produce undesirable effects on least squares estimators. Ridge regression estimator is suggested in handling severe multicollinearity while robust estimators such as MM estimator and Least Trimmed Squares (LTS) estimator are recommended in tackling the outlier issues. An even worse scenario is when these two problems occur simultaneously. Combination of both leads to robust ridge regression methods which can be used to handle both conditions simultaneously. In this study, a comparative investigation is carried out to compare the performance between ridge MM and ridge LTS estimators. The Root Mean Square Error (RMSE) and Bias are obtained for each estimator to compare their performances. By using simulation study, Laplace and Cauchy distributions are used in introducing outliers to the simulated data with high multicollinearity ρ = 0.90, 0.95 and 0.98 for sample sizes n=25, 50 and 100. From the results, it is found that Ridge LTS is the best estimator for many combinations of error distributions and degrees of multicollinearity. Similar results were obtained when using two sets of real data.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference13 articles.

1. A Comparative Study on Some Methods for Handling Multicollinearity Problems;Adnan;MATEMATIKA,2006

2. Multicollinearity in marketing models: Diagnostics and remedial measures;Ofir;Research In Marketing,1986

3. Ridge Regression: Biased Estimation for Nonorthogonal Problems;Hoerl;Technometrics,1970

4. A Simulation Study on Ridge Regression Estimators In The Presence of Outliers And Multicollinearity;Midi;Jurnal Teknologi,2007

5. High Breakdown-Point and High Efficiency Robust Estimates for Regression;Yohai;The Annals of Statistics,1987

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3