Monocular Depth Estimation Network Based on Swin Transformer

Author:

Yu Shangbin,Zhang Renyan,Ma Shuaiye,Jiang Xinfang

Abstract

Abstract Estimating depth from a single image is challenging because a single 2D image may correspond to many different 3D scenes with the same depth. While most deep learning based depth prediction methods extract depth features using small convolutional kernels with small receptive fields, which results in deformed depth edges and inaccurate depth values of distant objects in the depth estimation results. Aiming at this problem, we propose a depth estimation network based on Swin Transformer and the encoder-decoder structure. We construct the encoder using the Swin Transformer network, which can encode long-range spatial dependency and extract features on various scales and across different channels. The decoder of the proposed network is in charge of fusing the features from the encoder by the operations of interpolation, concatenation, and convolution. Experiments on KITTI and NYUv2 datasets show that our proposed network can get more accurate depth edges and depth values than the state-of-the-art methods.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

Reference11 articles.

1. Depth map prediction from a single image using a multi- scale deep network;Eigen,2014

2. Swin transformer: Hierarchical vision transformer using shifted windows;Liu,2021

3. U-net: Convolutional networks for biomedical-image segmentation;Ronneberger,2015

4. Tombari F and Navab N, Deeper depth prediction with fully convolutional residual networks;Laina,2016

5. From big to small: Multi-scale local planar guidance for monocular depth estimation;Lee,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3