Thunder Signal Detection via Deep Learning

Author:

Zhang Han,Yan Biwu,Gu Shanqiang,An Chao,Li Jian,Wu Min,Wang Yu,Xu Heng

Abstract

Abstract In this paper, a thunder signal detection method is proposed based on the deep learning framework. The recorded thunder signal is segment-wise acquired, stored and pre-processed. In each frame, we use Mel Frequency Cepstrum Coefficient (MFCC) to extract the features of the thunder signal, which is consistent with the frequency characteristics of human perception. We then use the MFCC features derived in each frame to form a 3-channel tensor data, which is used as the further input to the designed convolutional neural network (CNN). The goal of CNN is to classify the existence of thunder for a single data frame. To improve the robustness of CNN, we included other confusing signals that are similar to thunder signals in the training and testing datasets. On the testing dataset, our proposed method outperforms the state-of-art methods in terms of accuracy, sensitivity, and specificity. Our proposed deep-learning-based thunder detection method not only increases the real-time performance of the lighting location system with thunder signals but also further improves the accuracy of other sound alarm systems.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference14 articles.

1. Lightning channel reconstruction from thunder measurement;Few;J. Geophys. Rse.,1970

2. Acoustic localization of triggered lightning;Arechiga;J. Geophys. Res.,2011

3. Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays;Qiu;J. Geophys. Rse.,2012

4. Reconstruction of lightning channel geometry by localizing thunder sources;Bodhika;J. Atmos. Sol-terr,2013

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3