Synthesis of Vanadium Ferrite Nanoparticles By Microwave Assisted Technique

Author:

Vilvanathaprabu A,Ravikumar Balaji,Perumal Seenuvasakumaran

Abstract

Abstract Among the magnetic materials ferrites are of great interest due to its distinctive properties. Ferrites exhibit a spontaneous magnetic moment below a Curie temperature and act as insulators at low temperature. Sincethey have been used in number of technological applications like microwave devices, magnetic and magneto optic recording, data storage etc. The incredible magnetic, electric and dielectric properties of ferrites make them more attractive and applicable in the current field of science and technology. In the present study vanadium ferrite nanoparticles were synthesized by microwave assisted method. The structural properties of synthesized nanoparticles are carried out from X-ray diffraction technique. The presence of peaks confirms the crystalline nature of the vanadium ferrite nanoparticles. The crystal structure, crystalline size (D), Dislocation density (8) is determined from XRD data. Also using Williamson-Hall plot micro strain value is calculated.The different molecular vibrations are confirmed through Fourier Transformed Infrared Spectroscopy (FTIR) vibration spectra. From the Ultra Violet Spectroscopicdata using the Tauc relation, the energy gap (Eg) at the edge of absorbance band is calculated as 4.28eV for direct and 4.84 eV for indirect transition. The morphological studies are done through Scanning Electron Microscope (SEM). From the SEM micrographs we confirm the presence of spherical nanoparticles and they are arranged uniformly. From VSM analysis, we calculated the saturation magnetization as 20.00 emu, coercivity as 125.96 g, and retentivity is 130.45 emu.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3