Analysis of the methods for group constants generation for calculation of a large SFR core using Serpent 2 and CriMR codes

Author:

Akpuluma D A,Smirnov A D,Pugachev P A,Tikhomirov G V,Gerasimov A S

Abstract

Abstract This work aimed at generating homogenized group constants using the Serpent code and then using the CriMR diffusion code to model the large SFR OECD 3600 MWth MOX core. The results were compared with a full core reference Monte Carlo solution by Serpent. Reactivity feedback parameters were also considered. Generating the group constants from separate fuel assemblies allows for simultaneously carrying out calculations and then using the results as input in diffusion codes rather than waiting so long for a 3D full core Monte Carlo calculation to be completed. From the results of the integral parameters we see a close agreement in the calculation codes. The differences can be attributed to the errors that could arise from generating the constants from individual sub-assemblies. The differences in the underlying physics and approximations used in development of the codes could also be a factor. Another way the errors could be reduced is by checking to see that the sub-assembly configurations used in the non-multiplying zones are as close as possible to the real layout in a full 3D core.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference12 articles.

1. Selecting benchmarks for reactor simulations: An application to a lead fast reactor;Alhassan;Ann. Nucl. Energy,2016

2. The Serpent Monte Carlo code: Status, development and applications in 2013;Leppänen;Ann. Nucl. Energy,2015

3. Efficiency and implementation of alternating direction implicit method for neutron diffusion equation in three-dimensional space;Pugachev;Journal of Physics: Conference Series,2018

4. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes,2016

5. On the use of the Serpent Monte Carlo code for few-group cross section generation;Fridman;Ann. Nucl. Energy,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3