Author:
Kovacs C J,Haugan T J,Sumption M D
Abstract
Abstract
There is a recent surge in activity to develop high power electric (or hybrid electric) aircraft. Part of this development effort is the creation of lightweight and small volume high-performance motors and airborne power transmission cables. As part of the power transmission of a distributed propulsion aircraft will be T-terminals to extract power to individual motors from a “main” power cable. In this research, a standard pressed plate high purity Cu T-terminal, with cylindrical high-temperature superconducting cables (main cable current of 20 kA, branch cable current of 2.5 kA), were investigated using Multiphysics simulations. Then, a more geometrically optimized high purity Al-Cu composite T-terminal was simulated under similar conditions. Discussed are the influence of T-junction geometry, operating temperature (30 to 50 K), contact resistance, and magnetoresistance on joule losses of terminals with different masses. It is shown the Al-Cu terminal can greatly reduce joule losses/mass of the T-terminal while also having an intrinsic clamping force from thermal expansion of the Al shell of the composite structure.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献