A new guideway design for the HTS Maglev vehicles considering curve negotiation

Author:

Sivrioglu Selim,Yildiz Ali Suat,Bedirbeyoğlu Muhammet Islam

Abstract

Abstract High-temperature superconducting (HTS) magnetic levitation (maglev) systems have been studied by various research groups regarding both experimental and modelling point of view. However, there exists a trade-off between levitation and guidance forces acting on the vehicle, especially in the case of high-speed curve negotiation. To overcome this trade-off, we proposed a multi-surface permanent magnet guideway (PMG) design, for the small-scale maglev vehicle, in which polarization of the permanent magnets (PM) changing with track segments. The HTS-PM interaction model was constructed by utilizing H-formulation implemented in COMSOL Multiphysics®. The hysteretic levitation and guiding force expressions used in the dynamic simulation have been obtained by a polynomial fit to force-displacement curves obtained by the finite element model built in COMSOL Multiphysics® environment. Also, the damping effect derived from free-fall dynamic tests is incorporated into the model to construct a more realistic simulation model. The effectiveness of the proposed track design has been validated through comparisons with Halbach-derived PMG. Finally, it can be thought that the proposed PMG design is a good candidate for the high-speed operation of a maglev system when the increased levitation and guiding stiffness values are considered.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference18 articles.

1. Tests on a superconductor linear magnetic bearing of a full-scale MagLev vehicle;Sotelo;IEEE Trans. Appl. Supercond,2011

2. Superconductively levitated transport system—the SupraTrans project;Schultz;IEEE Trans. Appl. Supercond,2005

3. The first man-loading high temperature superconducting Maglev test vehicle in the world;Wang;Physica C Supercond,2002

4. Curve negotiation performance of high-temperature superconducting maglev based on guidance force experiments and dynamic simulations;Li;IEEE Trans. Appl. Supercond,2020

5. Effect laws of different factors on levitation characteristics of high-Tc superconducting maglev system with numerical solutions;Huang;J. Supercond. Nov. Magn.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3