On polynomial symmetry algebras underlying superintegrable systems in Darboux spaces

Author:

Marquette Ian,Zhang Junze,Zhang Yao-Zhong

Abstract

Abstract We review three different approaches to polynomial symmetry algebras underlying superintegrable systems in Darboux spaces. The first method consists of using deformed oscillator algebra to obtain finite-dimensional representations of quadratic algebras. This allow one to gain information on the spectrum of the superintegrable systems. The second method has similarities with the induced module construction approach in the context of Lie algebras and can be used to construct infinite dimensional representations of the symmetry algebras. Explicit construction of these representations is a non-trivial task due to the non-linearity of the polynomial algebras. This method allows the construction of states of the superintegrable systems beyond the reach of separation of variables. As a result, we are able to construct a large number of states in terms of Airy, Bessel and Whittaker functions which would be difficult to obtain in other ways. We also discuss the third approach which is based on the notion of commutants of subalgebras in the enveloping algebra of a Poisson algebra or a Lie algebra. This allows us to discover new superintegrable models in the Darboux spaces and to construct their integrals and symmetry algebras via polynomials in the enveloping algebras.

Publisher

IOP Publishing

Subject

Computer Science Applications,History,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3